
BETA BASIC NEWSLETTER No. 5

Let's start as usual with corrections to the last Newsletter.

PROC rotate

Unfortunately the printers lost the last two lines from page 6.
(From now on, I am supposed to check that their photographs match my
originals and have not been wrongly trimmed.) My own contribution
was to make a RESTORE statement incorrect by altering the line
numbering slightly after PROC rotate had been converted to a Tasword
text file. The missing lines are essential for poking the machine
code for PROC rotate into place, and PROC rotate is needed as a sub-
procedure for PROC dump in the same issue. Sorry about the mix-up -
anyway, here is the corrected bottom of page 6:

70 IF PEEK cd<>33 THEN
 RESTORE 120
 FOR n=cd TO cd+37
 READ a
 POKE n,a
 NEXT n

Some readers managed to get everything working correctly despite
the problems, and PROC dump was particularly appreciated. It can be
modified to work with printers that require a non-Epson bit-image
data arrangement. Larry Wooden (Clacton-on-Sea, Essex) got it
working with his Apple Imagewriter by using rotates and changing
the FOR in line 40 to FOR b=2 TO 9. PROC dump will work with the
OPUS disc interface printer port to provide a screen dump facility.

POUND=HASH

The pound sign in line 50 of the procedure on page 3 of
Newsletter 4 caused confusion in at least one reader. I simply
forgot to change the printer to a non-UK alphabet; thus "#" (hash)
came out as a pound sign. You'll often see this in listings in
magazines.

A NOTE ON "TURTLE"

A minor problem with early versions of Beta Basic was that RENUM
did not give a "Failed" message as it should on encountering LIST
expression. This has been corrected, but the cure has the unforseen
side effect of making TURTLE's TO statement mess up the display with
a "Failed" message when it renumbers line 9975. This line is PROC
LISTP - if you do not want to use this procedure, but want to avoid
the TO problem, simply delete the line. (It is some small
consolation to me to know that bug fixes to complex, programs are
renowned for causing almost as many problems as they correct!)

**
LLISTINGS

Ettrick Thomson pointed out that even using the POKE to 57500
(given in No 4, p8) to control characters per line in printouts, the
first line printed doesn't always do what is expected. This is
because the value at 57500 is increased by one and copied to a
printer position variable (57545) only when a carriage return is
sent to the printer. So, do an LPRINT after POKEinq 57500, or POKE
57545 with whatever you used for 57500, plus 1.

-2-

**
128K VERSION OF PETA BASIC

I am feeling rather more positive about the 1228 that I was when
I wrote the last Newsletter. Then, I was irritated at the needless
inflexibility of the memory paging and the difficulty of hiding BB
in the extra memory. Now, I am still irritated but I don't think it
is such a handicap. The version I am working on now will still only
give 22K or so for a Basic, program - but 22K is a long program
and there would be no problem at all if you could MERGE new parts of
the program from RAMdisc. But wait! What if you have a data-
crunching program that takes 15K? You could easily run out of space
for variables - almost always because of large arrays. If you could
keep arrays on the RAMdisc and access them from the Basic program,
the problem would be solved. I intend to allow individual arrays up
to 64K in length. A data-crunching program could have 70 or 80K of
variables - much better than would normally be possible without Beta
Basic.

I should stress that this doesn't work yet - but I'm pretty sure
it will. A 128K version of Beta Basic should be ready in time to
give details in the next Newsletter. I know many BB users have held
off buying a 128 until they are sure that a BB version able to use
the extra memory is coming - hence this advance notice The 128K
Spectrum is selling well and Betasoft will support it.

Both the Spectrum Plus and the Plus 2 have a good video signal
should give a much improved picture on a monitor or monitor TV. Once
you have used one you will find it hard to go back to a conventional
TV. I use a Ferguson TV with RGB input which I would recommend. It
is just as good as a "real" monitor at the resolution available on a
Spectrum. Incidentally, I think that the Plus 2 keyboard is quite
good.

**
PROC short - truncating strings from arrays

Strings in arrays are always padded with spaces to make them the
same length, which can be inconvenient. PROC short (from Alain
Vezes, Albi, France) strips off the trailing spaces from a string
supplied as the first parameter. The result goes into a string
specified by the second parameter. The example shows that PROC short
still works with the special case of a string that is all spaces
thanks to the EXIT IF L=O. (One could also use LOOP UNTIL L=0.)

10 DIM as(10,10)
 LET a$(1)=”testing"
 short a$(1),b$
 PRINT b$,LEN b$
 short a$(2),b$
 PRINT b$,LEN b$

100 DEF PROC short x$, REF y$
 LOCAL L
 LET=LEN x$
 DO WHILE x$(L)=” “
 LET L=L-1
 EXIT IF L=0
 LOOP

LET y$=x$(TO L)
 END PROC

-3-

**
SIMPLE MENUS

Ivan Klemvig (Chirk, Clwyd) recently asked about using a "menu"
to select from a set of procedures. Below is a possible basis for a
simple menu system. The DO-loop prints the available options (you
would almost certainly want to do this more prettily!) and GETS a
number from the keyboard. This causes one of the (silly) procedures
after ON to be selected. After that procedure has finished, the main
loop will be re-entered at line 110, and the menu will be printed
again. The only frill I have included is an exit option using RROC
leave. This PROC sets a flag (yn) so that the higher-level PROC
smenu leaves the DO-loop and finishes. The alternative of just
putting a "STOP" in PROC leave is simpler but it leaves the
PROC/GOSUB stack and local variables in a "messy" state.

10 smenu

100 DEF PROC smenu
 LOCAL k,yn
 LET yn=O
 DO

CLS
 PRINT "1. Noise"`"2. Number"`"3. Exit"
 GET k

ON k
 noise
 rannum
 leave yn
 110 LOOP UNTIL yn=1
 END PROC

120 DEF PROC noise
 BEEP 1,1
 END PROC

130 DEF PROC rannum
 CLS

PRINT RNDM(10)
 PAUSE 100
 END PROC

140 DEF PROC leave REF abort
 PRINT "bye!"
 LET abort=l
 END PROC

**
HORIZONTAL MENUS

The following contribution from P. Field (Halsham, N. Hurnbs.) is
a more complex variant on the menus theme; I have modified it to
avoid the need for pre-defining particular windows and variables.
The procedure takes up to 5 options as a DATA list and prints them
on the top screen line. Pressing any key except ENTER will move the
"current selection" by one; pressing ENTER will cause the procedure
to finish with global variable "opt" holding the final selection.

-4-

Notes:

Variable names have been "re-used" b$ is DIMed as 10 to make the
READ selections all the same length, and b$ is also used with GET -
hence the reference to b$(1).

In line 310 the quotes contain 10 spaces.

The "current selection" is indicated initially by printing in a
contrasting colour, using OVER 1 and spaces so that the underlying
text isn't erased. The colour alone is then moved using ROLL
(attributes) to change the highlighted option. (The variable n
changes too.) If you try to move too far right, the highlight is
ROLLed back to the left margin again.

200 menu M-drive,Forget, Frinter,Exit
 PRINT opt

300 DEF PROC menu DATA
 LOCAL b$,n
 LET opt=0
 PRINT CSIZE 4,8;AT 0,0;STRING$(64," ")
 PRINT AT 0,0;
 DIM b$(10)
 DO

READ LINE b$
 PRINT CSIZE 4,8;b$;" ";
 LET opt=opt+1
 LOOP UNTIL ITEM()=0 OR opt=5
 310 PRINT CSIZE 4,8;AT 0,0; OVER 1; PAPER 2; INK 7;"
 “: REM 10 spaces

320 LET n=1
 DO

GET b$
 EXIT IF b$(1)=CHR$ 13
 LET n=n+1
 IF n<=opt THEN
 ROLL 4,48;0,175;32,8
 ELSE ROLL 1,(opt-1)*48;0,175;Z2,8
 LET n=1
 330 LOOP
 LET opt=n
 END PROC

**
BIGGER DUMPS

PROC dump in issue 4 produces a screen copy that is about 8 cm.
(3.1 inches) wide on an Epson printer. This is a little small for
some purposes. It is easy to double the width of the dump - simply
send each byte twice by changing the LPRINT a$(b); in line 40 to
LPRINT aS(b);a$(b);. You must also alter line 30 so that 512 bit-
images bytes are specified - the CHRS 1 will become CHR$ 2 Doubling
the height is a bit harder. In some cases you use CSIZE 8,16 to
double the on-screen height, or alternatively add the following
statements between GET and rotate in line 40:

LET a$(9)=a$(5),a$(8)=a$(5),aS(7)=a$(4),a$(6)=a$(4)
 LET a$(5)=a$(3),a$(4)=a$(3),a$(3)=a$(2)

Change the FOR r statement to: FOR r=0 TO 21.5 STEP 0.5

-4-

-5-

**
TURNING PROGRAMS INTO TASWORD TWO FILES

Jan Biemans (Zoetermeer, The Netherlands) asked for my method of
transferring programs to the Tasword word processing program, so
here it is, for Tasword Two. Due to inherent indolence and because I
have a large number of old text files I haven't converted to Tasword
Three yet - but see the next section.

First, load the program you want to transfer. Then OPEN a stream
for output to a serial file - make sure it is a new name. Then LIST
the program to the stream, and close it. e.g.

OPEN #5;"m";1;"test"
 LIST #5

CLOSE #5

If you do this with BB resident the program will be output
according to the current LIST FORMAT. For the next stage, BB must be
present. LOAD the program below and run it. It will
ask for the input file name e.g. "test" and then the name for the
output text file. The locations normally occupied by the first 100
lines of a Tasword file are cleared to spaces by the POKEd STRINGS -
clear more space if you need to. The input file is loaded one string
at a time and processed. (The carriage returns at the end of each
program line, and any carriage returns caused by colons cause the
division into strings.) Since the file contains tokens rather than
ASCII, SHIFT$ is used to expand them. The result is printed, and
poked into memory. The value 32001 is used in line 20 to give an
left indent of one space, but you could use 32000, 32002 or other
values. Finally the poked memory area is saved and can be loaded
back like any other Tasword file. The main flaw in the program is
that long program lines are not indented from the left margin when
they exceed 64 characters and wrap round to the next line, but this
is really only a nuisance with long DATA statements.

10 CLEAR 31999
 INPUT "Input file? ";i$
 INPUT "Output file? ";o$
 POKE 32000,STRING$(6400," ")
 CLOSE #6

OPEN #6;"m";1;i$
 LET d=0
 20 DO
 INPUT #6; LINE a$
 LET a$=SHIFT$(7,a$)
 FOR c=1 TO LEN a$
 PRINT a$(c);
 POKE 32001+c+d,CODE a$(c)
 NEXT c

30 PRINT
 LET d=d+64+64*INT (LEN a$/64)
 LOOP UNTIL EOF(6)
 SAVE 1,o$ CODE 32000,d

-6-

**
TURNING PROGRAMS INTO TASWORD THREE FILES

One of the disadvantages of Tasword Two is that a text file of
e.g. 200 lines always takes 200*64 bytes, even if most of the lines
are empty or very short. Tasword Three uses a different system in
which short lines of text take less space, using CHR$ 13+CHR$ 10 as
a terminator. This makes the conversion of programs into text files
rather easier, as both input and output files are essentially
collections of strings of irregular length. The main task is
expansion of keyword tokens to ASCII form. The solution is similar
to the program on page 80 of the BB manual This contribution from
M.J. Smith (Rossendale, Lancs.) can be MERGEd with the program in
memory. It will create a data file of all preceding program lines on
drive 1 with the name PROGLIST, which can be loaded or merged as a
Tasword Three document. The LIST FORMAT can be adjusted as required.

9300 DEF PRROC IMPORT
 9310 LIST FORMAT 2
 9820 OPEN #5; "M"; 1; "TEMP"
 LIST #5; TO 9799
 CLOSE #5
 9830 OPEN #5;"M";1;"TEMP"
 LET AS=””
 9840 DO UNTIL EOF(5)
 9850 INPUT #5; LINE Z$
 9860 LET A$=A$+SHIFT$(7,Z$)+CHR$ 13+CHR$ 10
 5870 LOOP
 9880 CLOSE #5
 9890 ERASE "TEMP"
 ERASE "PROGLIST"
 OPEN #5;"M";1;”PROGLIST"
 PRINT #5;A$
 CLOSE #5
 9990 END PROC

**
PASSING PARAMETERS BY REFERENCE - A MISUSE

Passing parameters by reference is one of Beta Basic's more
subtle features. Although powerful, it can also be confusing. One
thing you should not he doing is passing a FOR-NEXT loop variable by
reference. YOU only, need to use REF to specify a variable which
will be altered so that the procedure can return a result. You
should not be altering a FOR-NEXT variable within the loop in any
case, but if you pass such a variable to a procedure as a REF
parameter, you will cause a problem. The parameter will be turned
into a normal numeric variable, except in the special case when the
formal and the actual parameters are the same Normal single-letter
numeric variables generally act the same as FOR-NEXT variables, but
they don't satisfy NEXT. You will get a "NEXT without FOR" error.
Here is an example:

100 FOR F=1 TO 10
 test n

PRINT n
 NEXT n

200 DEF PROC test REF x
 LET x=-5
 END PROC

Passing a FOR-NEXT variable without using REF is quite legitimate,
of course - try removing REF from the example.

-7-

**
MORE ON FAT CHARACTERS

Stan Flynn (Stafford) wrote to me after reading Newsletter 4. He
suggested the much simpler and faster method of "fattening"
characters given below. Text is plotted twice at a desired x and y
coordinate, with the start position being moved by one pixel for the
second plot. OVER 2 makes this add to the first plot.

10 FATCHAR "THIS IS AN EXAMPLE",55,87

100 DEF PROC FATCHAR a$,x,y
 FOR f=x TO x+1
 PLOT OVER 2;f,y;a$
 NEXT f

END PROC

Later, Pauli Lindgren (Helsinki, Finland) sent a more elaborate
version of the same idea that uses character coordinates instead of
pixel coordinates. The default position is the previous print
position (obtained by PEEKing the relevant system variables), so
usually you don't need to specify any coordinates at all. After the
text is written, the print position is moved to the end of the text.
You can use PRINT to move the print position down to the next line.

10 PRINT "normal"
 20 bold "HOLD CAPITALS"
 30 PRINT
 40 bold "and bold lower case"

100 DEF PROC bold t$,rew,col
 DEFAULT cot=33-PEEK 23688,row=24-PEEK 23689
 LOCAL x,y
 LET x=cot*8,y=175-row*8
 PLOT x,y;t$
 PLOT OVER 2;x+1,y;t$
 PRINT AT row,col+LEN t$;
 END PROC

**
ITALIC PRINTING

Pauli Lindgren also sent a PROC to print italics which works
similarly to the previous PROC bold. I have modified the FOR-NEXT
loop that "smears" the text sideways - you might like to play with
this too, in order to vary the effect.

200 DEF PROC italics t$,row,col
 DEFAULT col=33-PEEK 23688,row=24-PEEK 23689
 LOCAL x,y,n
 LET x=col*8,y=175-row*8
 PLOT OVER 2;x,y;t$
 FOR n=1 TO 7 STEP 2

SCROLL 8;x,y;LEN t$+1,n
 NEXT n

PRINT AT row,col+LEN t$;
 END PROC

Pauli adds that you can get bold italics with something like:

BOLD "text",10.10: ITALICS “ “,10,10

-8-

**
3D HIGHLIGHTING

Once prodded by Stan Flynn, I realised that over-plotting in
various waves could produce some interesting effects. I expect
readers will have their own ideas - but here is one of mine:

10 hilite “BETA",0,87

200 DEF PROC hilite a$,x,y
 FOR n=0 TO 3

PLOT CSIZE 32; OVER 1;x-n,y-n;a$
 NEXT n

PLOT CSIZE 32; OVER 2;x-4,y-4;a$
 END PROC

**
LOGO-STYLE REPEAT STRUCTURE

My first thought on seeing this contribution from Pauli Lindgren
(Helsinki) was that it couldn't work. My second was that if the real
structured programming fans catch him, they will have him shot. I
took some time to understand the program logic (there are oddities
to do with keeping the PROC/GOSUB stack in balance) and I suggest
you don't bother! However, the structure works very well (it is
better than the one in TURTLE) and apparently has no nasty side
effects. Deviousness seems to be effective!

Pauli writes: "REPEAT n repeats n times all statements inside the
block. Each block ends with an END_ REPEAT statement. Loops can be
freely nested and used within procedures. The only restriction is
that each REPEAT and END_ REPEAT must be on a separate line. Note
also, that the loop variable n of the innermost loop is visible to
the main program within the loop."

10 DEC PROC repeat n
 LOCAL retline
 POP retline
 GO SUB 20
 2O FOR n=1 TO n
 POP

GO TO retline+l
 30 END PROC

40 DEF PROC end_repeat
 GO SUB 50

NEXT n
 50 END PROC

100 repeat 5
 110 repeat 10
 120 PRINT “*”;
 130 end_repeat
 140 PRINT
 150 end repeat

The demonstration lines 100-150 have been manually indented.
Incidentally, I recently told to a reader that DEF PROC and END PROC
should appear next to the left-hand margin to a LLISTinq or
something was wrong with the program. PROCs REPEAT and END_REPEAT
are the exception that proves the rule!

-9-

**
PRINTING ERROR Messages - AND A METHOD OF HANDLING PACKED TEXT

A reader asked if I could add an error message string facility to
Beta Basic. This would be useful with ON ERROR, as you could print
an error message derived from the variable ERROR without having to
make up a whole set yourself. All the normal error messages are of
course stored in the ROM, and BB's are part of the program, so I
wondered how easy it would be to use them. Both sets use a very
common (in machine code) method of running messages together, with
128 being added to the CODE of the last character in each massage.
The messages are accessed by counting past a number of such end
markers till you reach the message you want. Unfortunately, when I
tried this in Basic, it took several seconds to scan through even 20
messages. In machine code, a very simple routine will do the trick,
as shown by PROC locate. The procedure looks through memory starting
at ad for string i (in the range 0-255) and returns it in the string
you specify. The machine code routine is POKEd into the printer
buffer (but you could use another location) if it hasn’t been done
already. It is used twice, once to find the start of the string and
once to find the end. SHIFT$ is used to remove the "plus 128" marker
from the last character. PROC errmes determines whether the error
message wanted is a Spectrum Basic or a Beta Basic one, and sets p
appropriately before calling PROC locate to find it.

10 FOR e=0 TO 33
 errmes e
 NEXT e

100 DEF PROC errmes er
 LOCAL p
 PRINT er;
 LET p=5009
 IF er>=28 THEN
 LET er=er-28,p=62042
 110 locate p,er,a$
 120 PRINT TAB 4;a$
 130 END PROC

200 DEF PROC locate ad,i, REF a$
 210 LOCCAL s,n,a
 220 LET s=23296
 IF PEEK s<>6 THEN
 FOR n=s TO s+14
 READ a
 POKE n,a
 NEXT n
 DATA 6,0,33,0,0,126,35,23,48,251,16,249,68,77,201
 230 POKE s+l,i+l
 DFOKE s+3,ad
 240 LET ad=USR s
 POKE s+1,1
 DPOKE s+3,ad
 LET a$=SHIFT$(5,MEMORY$()(ad TO USR s-1))
 250 END PROC

You might want to modify PROC locate to look through your own
strings, since you can run up to 256 strings together into one giant
string, without the wastage of space that occurs in arrays. Chance
the ad in line 200 to e.g. b$, and the ad in line 230 to
LENGTH(0,"b$"). The big string you make up should have a dummy first
character with a CODE of 128 or more. Call the PROC with the name of
this string as the first parameter.

-10-

**
TWO SPECTRUM BUSS AND A FEATURE

Michael Charlton (Pontefract, W. Yorks.) noticed while altering
PROC axes (issue 3) that:

PLOT x,y;STR$ x

often leads to strange results, but the form below always works:

LET a$=STR$ x: PLOT x,y;a$

This is due to a bug in the part of the Spectrum that deals with
printing decimal numbers. If the number is between -1 and 1, an
extra number is left on the stack used during expression evaluation.
This causes problems for the STR$ routine which "prints" numbers to
a temporary "workspace". Thus:

PRINT 2"+STR& O.5

gives 0.5, not 20.5 as it should. When used with BB's PLOT string
command, the effect is to make the plot occur at the wrong place, as
in:

PLOT 100,100;STR$ O.5

Unfortunately this is hard to cure without a ROM change! You can
program round the bug by pre-assignment of the string as above.

Michael also noticed while saving strings that they would only
load back if he had dimensioned them first. Actually, the SAVE
"name" DATA a$() command is only supposed to work with arrays, and
any attempt to save an ordinary string should produce an error
message. Due to a mistake in the ROM, this doesn't happen, and
saving is allowed - but the strings cannot be loaded back!

THE FEATURE

Rod Macaulay noticed while writing educational programs in Seta
Basic that a comparison like: IF z=y*10 THEN ... can give the wrong
result. Another example of the same phenomenon is:

PRINT 1.2*10-12

The expected result is zero, but instead a small number is printed
in exponent form. The problem is seen on many computers, and it
arises because floating-point numbers cannot always be stored with
complete accuracy in the binary format generally used. (What is
printed on the screen is a rounded version of the internal format -
otherwise PRINT 1.2*10 would be seen as 12.0000000037 and the
arithmetic failure would be a bit less confusing.) The solution is
to round decimal numbers somehow before doing any comparisons. With
Beta Basic we could use:

DEF FN b(x)=VAL USING$("#######.######",x)

which will round a number to six decimal places. (Change the number
of hashes after the decimal to modify the rounding precision.) Six
decimal places of any stored number should De correct, apart from
cumulative errors in calculations. so:

PRINT FN b(1.2*10)-FN b(12) gives zero.

-11-

**
OLD-STYLE NUMERALS

This contribution is from Ettrick Thomson (Aldeburgh, Suffolk).
The method of copying the normal character set from RCM to RAM for
modification should be of interest to anyone who wants to customise
all or part of the character set; PROC chardes from issue 4 could be
used for this purpose with very minor changes. Here's Ettrick's
explanation:

"The procedure 'OS_Num' replaces the 0,1,2,...,9 of the Spectrum
Character Set by old-style versions. These have ascenders and
descenders which, as with lower-case letters, help in distinguishing
pairs of characters that resemble one another in the normal set,
such as 'B/8' or 'S/5'."

"These old-style numerals have long been standard in UK and European
mathematical tables and (sometimes in modified form) in UK and
European typewriters. The USA, however, does not use them and it is
presumably their influence that has led to their disappearance from
computers."

"Line 130 is an optional extra. It goes on, after changing the
numerals, to "fatten" the new character set (Newsletter No 4, p.2),
adding about 15 sets to the running time of a few seconds without
it; the copyright character, however, is excluded, since it would be
incompletely fattened and would be lop-sided. These fattened
characters are highly recommended on the Alphacom printer."

"It is worth pointing out that Line 100 copies the normal character
set to a new location above a suitably reduced RAMTOP, and makes the
System Variable CHARS point to this new set. This could be a
preliminary to any partial change of the character set. The Beta
Basic NEW (unlike the straight Spectrum NEW) does not affect CHARS."

The listing is a screen dump showing the new characters in use.

100 DEF PPOC OS_num
 LOCAL s,i,c
 CLEAR 344
 CLEAR 384
 LET s=DPEEK (23730)+2
 DO UNTIL PEEK (s-i)=0
 LET s=s+3+DPEEK(s)
 LOOP

POKE s,MEMORY$() (15616 TO 16383)
 110 RESTORE 120
 FOR i=s+128 TO s+207
 READ c
 POKE i,c
 NEXT i

RESTORE
 120 DATA 0,0,56,76,84,100,56,
 0,0,0,48,16,16,16,56,0,0,
 0,56,68,24,32,124,0,0,0,5
 6,68,8,4,68,56,0,0,8,24,4
 0,72,252,8,0,0,120,64,120
 ,4,68,50,0,16,32,120,68,6
 8,56,0,0,0,124,4,8,16,32,
 64,0,65,68,56,68,68,56,0,
 0,0,56,68,68,56,8,16
 130 FOR i=s+8 TO s+759
 POKE i,OR(PEEK i,PEEK i
 /2)

NEXT i
 140 END PROC

-12-

**
BETA BASIC SYSTEM VARIABLES

Here is a long-promised item - the main block of BB system
variables. (There are a few more scattered about, some of them
previously documented.) Some variables are used for several or many
different purposes. Note that variables may be 1 or 2 bytes long.
Happy hacking!

57344 Multiple uses.
57345 Multiple uses.
57346 Multiple uses.
57348 FILLed area/temporary store for output routine address.
57350 Temporary store for attributes used by PLOT a string.
57351 Temporary store for INVERSE/OVER used by PLOT a string.
57352 Temporary store for address of the output routine.
57354 Statement counter used in syntax check.
57355 Flip-flop used by TRACE.
57356 START used by commands which allow start TO end
57357 END as above. Also used as a pointer during PROC.
57360 Spare - I think!
57361 Output flags. Bit 7 is 1 if CSIZE is non-0. Bit 0 shows if
 a GET block has attribute information or not.
57362 OVER 2 status - temporary.
57363 OVER 2 status - permanent.
57364 current co-ordinates for non-zero CSIZE.
57366 right limit of current WINDOW
57367 left limit
57368 top limit
57369 bottom limit
57370 Permanent character width
57371 Permanent character height
57372 Temporary character width
57373 Temporary character height
57374 Height magnification of characters
57375 Counter used during character height magnification.
57376 Temporary WINDOW (0, or WINDOW no. +128)
57377 Indentation counters used by LIST FORMAT.
57381 LIST FORMAT flag. 1=indented, 0=normal
57382 Line numbering flag. Non-0=no line numbers, 0=line numbers
57383 KEYWORDS mode 2/3/4
57384 Screen height in character lines.
57385 Cursor flag used in fast cursor movement.
57386 Flag showing scrolling was needed to show the current line
57387 Previous scroll count - used in fast cursor movement.
57388 Line with cursor
57389 Number of screen lines in a program line - see below.
57390 Number of characters in addition to lines. Used as
 counters during fast cursor movement.
57391 Characters per line.
57392 Flag used by output routine during indentation.
57393 EDIT flag. 0=EDIT, 255=INPUT
57394 AUTO flag
57795 DEFAULT drive or station number.
57396 DEFAULT device letter (m/t/n)
57397 LET flag. 0=LET, 255=DEFAULT (variable)
57398 SAVE etc. variable. 0=no slicer, 255=slicer, 228=DATA
57399 Flag used by REF
57400 Store for error stack pointer
57402 AUT0 step value/REF data
57404 Counters used by ROLL/SCROLL to keep attributes in synch.
57406 ALTER reference/REF variable
57407 Permanent WINDOW

-13-

**
DISC SYSTEMS

Armin Kausler (Boblingen, West Germany) Writes:

" I use my Spectrum with a Timex Floppy System. There is no other
way to send or receive data from the floppy than to enter:

RAND USR 59904: CAT * (or LOAD #, SAVE # etc.): RAND USR 58419

But I cannot use this sequence of commands inside PROCs, LOOPs, etc.
Can you tell me how to switch BB 3.0 on/off without this
disadvantage? "

Sometimes users require to turn BB off briefly while some add-on is
used. RAND USR 59904 turns BB off, but it also clears the stack used
by PROCs, LOOPS, that when BB is turned back on the PROC or LOOP
cannot continue correctly. If you use instead:

DPOKE DPEEK(23613),4867: DPOKE DPEEK(23613)-2,7030

Beta Basic will be turned off but the stack will be left intact. BB
can be turned back on by RAND USR 58419.

Peter Safranek (Ashford, Middx.) and Albert Kleyn (Romsev, Hants
- he is a product manager for IBM UK) have pointed out that the most
recent versions of the Technology Research Beta Disc Interface
(version 5.01) live with Beta Basic less happily than earlier
versions did. The problem is avoided by switching Beta Basic off
before using any disc commands. The problem seems to be related to
BB'S use of Interrupt Mode 2. This can be controlled by:

RANDOMIZE USR 63243 (Set normal Interrupt Mode 1)
 RANDOMIZE USR 61369 (Set Interrupt Mode 2)

The advantage of this method is that you can switch permanently
to Interrupt Mode 1 and Beta Basic will still work, apart from the
CLOCK and the improved BREAK. It may only apply to the Beta Disc
Interface, though.

Peter sent a listing of a program that loads Beta Basic and sets
up useful DEF KEYS for controlling TR DOS (version 5) before
deleting itself. I will only include enough of it here to give the
general idea. Note the use of one of the DEF KEYs to give a HELP
menu for the others.

2 CLEAR rt: RANDOMIZE USR 15619: REM: LOAD "beta 3.0"CODE
 3 RANDOMIZE USR 59419
 30 DEF KEY "c": RANDOMIZE USR 59904: RANDOMIZE USR 15619:
 REM : CAT
 40 DEF KEY "L": INPUT "Basic prog name? ";a$: RANDOMIZE
 USR 59904: RANDOMIZE USR 15619: REM: LOAD a$
 50 DEF KEY "k": INPUT "Code prog name? ";a$: RANDOMIZE
 USR 59904: RANDOMIZE USR 15619: REM: LOAD a$CODE
 90 DEF KEY "h": CLS: PRINT "BETA BASIC 3.0 - DOS DEF KEYS:”
 '''"c CAT" '' "l LOAD" '' "h help"
 110 DELETE TO

-14-

Since I mentioned in the last Newsletter that I had some OPUS
contributions I wasn't going to publish, I have had many letters
requesting publication. The contributions have been mainly improved
versions of CAT, the best one being by Alexander Stols of Molenhoek,
Netherlands. (I hadn't realised that OPUS allows any disc file to be
OPENed as a serial file for input - this means you can read the
header information on type, start line, variables length, etc. using
successive INKEY$'s from the file.) I also have a routine, adapted
from an Interface 1 version, that PRINTS to a string using stream
#14. I think most OPUS users want a good random-access database,
which should be quite easy, but I have not seen one yet. I am not
sure that this Newsletter is the best forum for such things, either.
John Wase (a Newsletter subscriber) writes an OPUS column for ZX
COMPUTING and would welcome contributions. (Apart from improved
CATS!)

**
PROC/GOSUB/DO-LOOP STACK AND LOCAL VARIABLES

If you press BREAK, or some other error occurs during a
procedure, and you do not CONTINUE or later use RUN or CLEAR, return
addresses and local variables can build up. To avoid this, enter END
PROC after using BREAK. You can do this several times, until
"Missing DEF PROC" shows that the data has been cleared; this might
be necessary if procedures were nested. POP removes a return address
from the stack used by GOSUBs, PROCs and DO-loops, but it does not
delete local variables. Since even a procedure without parameters is
assigned an empty storage space for local variables, you cannot
"clear up" after a stopped procedure using POP alone. There is a way
of deleting both a set of local variables and a return address while
staying within a procedure, although it is inelegant. I have
illustrated it below by modifying PROC end from issue 4 (lines 100-
130 below) so that it leaves the stack and local variables clear.
Lines 10 and 20 place two items on the stack; line 30 adds another
and creates a local variable storage area, and finally PROC end2 is
entered.

10 GO SUB 20
 20 GO SUB 30
 30 test

40 DEF FROC test
 end2

END PROC

100 DEF PROC end2
 110 IF DPEEK(23613)+3<DPEEK(23730) THEN
 GO SUB 130
 POP

GO TO 110
 120 GO TO 10000
 130 END PROC

PROC end2 looks at two system variables, 23613 (ERR SP) and 23730
(RAMTOP). The PROC/GOSUB/DO-loop stack grows downwards from RAMTOP,
lowering ERR SP. When this stack is empty, ERR SP is 3 less than
RAMTOP. If the stack is not empty, the GO SUB 130 puts another item
on the stack; the END PROC at line 130 erases a set of local
variables and uses the stack address to return to the POP statement.
(END PROC cannot distinguish between a GOSUB return address and a
procedure return address.) POP removes a stack item and the loop
will continue until the, stack is empty. It doesn't matter if the
local variable sets are all erased before the return addresses "run
out".

-15-

**
REMOVING COLOUR CONTROL CODES

Here is an interesting use of ALTER (a program reference) from Bo
Leuf (Gothenburg, Sweden). It removes any INK, PAPER (first FOR j
loop) FLASH, BRIGHT or INVERSE (second FOR j loop) control codes
embedded in the program. Note the form of ALTER used in PROC strip
to remove any instances of the string specified by a$.

1 DEF PROC decolor
 LOCAL i,j
 FOR j=16 TO 17
 FOR i=0 TO 9

strip
 NEXT i

NEXT j
 FOR j=18 TO 20
 FOR i=0 TO 1

strip
 NEXT i

NEXT j
 END PROC

2 DEF PROC strip
 LOCAL a$

LET a$=CHR$ j+CHR$ i
 ALTER (a$) TO ""
 END PROC

**
SPECIAL OFFER

I have recently used HiSoft's Basic compiler and I like it very
much. It successfully compiled a 20K Basic program which I had lying
around which was full of array references and user defined functions
- things which are not generally compilable. The result was about
the same length but 20-30 times faster, which is pretty good. The
compiler is fast, user-friendly, and can be copied to disc or
Microdrive. It will compile Basic programs up to 30K long, or even
more and the 128. It deals with all Spectrum Basic (bar a few very
minor exceptions) and it allows mixed integer (for speed) and
floating-point arithmetic.

It won't, of course, compile Beta Basic programs, but you can
locate the compiled code anywhere, so you could compile all or part
of a Spectrum Basic program and use it with BB by loading it below
BB's code. You can use several different USR calls to enter at
different places in the compiled code (calling different compiled
subroutines, for example).

There have been a number of highly-hyped compilers on the market,
but this is definitely the best I've seen. I have arranged a
discount of £2.50 with HiSoft for BB Newsletter subscribers, which
makes the price £ 22.45. If you send cheques for this amount, made
out to HISOFT, to this address, we will certify them as coming from
members and forward them to HISOFT, who will send you the program.
(They send stuff fairly fast - i.e. by return of post - so even this
circuitous method should give better service than you can expect
from many companies.)

In case you are wondering, Betasoft makes no money at all out of
this arrangement!

-16-

**
LAST WORD

In case you wonder what happened to "Readers' Letters", in this
issue I have treated topics raised by readers, rather than quoting
letters directly - it saves space. Still, there will probably be
some next issue.

Please send some contributions - I've almost run out!

The Post Office

Many people suspect the Post Office of being unreliable; after
all, it is pretty common to hear the phrase "Terribly sorry - it
must have got lost in the post!" So how bad are they? Well, out of a
fair number of items moving between Betasoft and companies „about
one-third were apparently "lost". In one case we learned by other
means that the item had never been sent; in another we were
fortunate to get the item, since the road name was missing! Wrongly-
-typed addresses seem to be common.

Out of many thousands of items moving between Betasoft and mail-
order customers in the U.K., the score is as follows:

Two newsletters not received - maybe the label fell off, or the
too-small envelope disintegrated.

One copy of Beta Basic not received - the replacement was found
tucked behind a door (stealable), apparently because the letter slot
was a bit narrow.

One order for BB not received - the customer wrote something like
"If by any chance you didn't get the order I sent recently that is a
real pity because it was postal orders and I didn't keep the
counter-foils and I'm an invalid and I haven't any money." We
thought this was a bit thin.

We also sent one letter to the wrong address ourselves, by
(somehow) combining two addresses on the word processor!

Three cheers for the British Post Office! If something is "lest
in the post" the most likely explanation is that it was wrongly
packed or labeled by the sender, and the next most likely
explanation is that the item was never sent. It is much, much less
likely that the Post Office actually lost it.

Outside the U.K., the picture is patchier. Some countries (West
Germany, Norway, Sweden, Denmark, Holland) are very reliable. Others
(Greece, Spain, Portugal, India) are rather less so. It is always a
bad sign if the inhabitants of a country routinely send ordinary
letters by registered post - they must know something!

BETASGFT, 92 OXFORD ROAD, MOSELEY, BIRMINGHAM, B13 9SQ, ENGLAND

Scanned, Typed, OCR-ed, and PDF by
Steve Parry-Thomas 23rd September 2004.
This PDF was created to preserve this

Newsletter for the future.
For all ZX Spectrum, Beta Basic
And www.worldofspectrum.org users

(PDF for Michael & Joshua)

http://www.worldofspectrum.org/

